Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis.

نویسندگان

  • Douglas Van Hoewyk
  • Gulnara F Garifullina
  • Ashley R Ackley
  • Salah E Abdel-Ghany
  • Matthew A Marcus
  • Sirine Fakra
  • Keiki Ishiyama
  • Eri Inoue
  • Marinus Pilon
  • Hideki Takahashi
  • Elizabeth A H Pilon-Smits
چکیده

Selenium (Se) is an essential element for many organisms but is toxic at higher levels. CpNifS is a chloroplastic NifS-like protein in Arabidopsis (Arabidopsis thaliana) that can catalyze the conversion of cysteine into alanine and elemental sulfur (S0) and of selenocysteine into alanine and elemental Se (Se0). We overexpressed CpNifS to investigate the effects on Se metabolism in plants. CpNifS overexpression significantly enhanced selenate tolerance (1.9-fold) and Se accumulation (2.2-fold). CpNifS overexpressors showed significantly reduced Se incorporation into protein, which may explain their higher Se tolerance. Also, sulfur accumulation was enhanced by approximately 30% in CpNifS overexpressors, both on media with and without selenate. Root transcriptome changes in response to selenate mimicked the effects observed under sulfur starvation. There were only a few transcriptome differences between CpNifS-overexpressing plants and wild type, besides the 25- to 40-fold increase in CpNifS levels. Judged from x-ray analysis of near edge spectrum, both CpNifS overexpressors and wild type accumulated mostly selenate (Se(VI)). In conclusion, overexpression of this plant NifS-like protein had a pronounced effect on plant Se metabolism. The observed enhanced Se accumulation and tolerance of CpNifS overexpressors show promise for use in phytoremediation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Overexpression of cystathionine-c-synthase enhances selenium volatilization in Brassica juncea

Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-c-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine-c-synthase from Arabido...

متن کامل

Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.

Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-gamma-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine-gamma-synthase from...

متن کامل

Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism.

NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation a...

متن کامل

Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se toler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 139 3  شماره 

صفحات  -

تاریخ انتشار 2005